Excelsior High School

Mathematics Department

Scope \& Sequence

Excelsior High School Mathematics Department

Scope and Sequence

Term 1: Christmas (September to December)
Topic: Number Theory/Measurement/Geometry and Trigonometry/Algebra

Duration: 14 weeks (max: 72 contact periods)

Date/Topic	Objectives	Resources	Possible Assessment
Term 1 Week 1 Number Theory	(a) Base ten Place Value System (Revision) (b) Formal application of the place-value concept to numbers in bases other than 10: (i) the value of a digit in a numeral in any base; (ii) conversion from base 10 to other bases and vice versa;		
Term 1 Week 2 Plane Figures	(a) Types of plane figures (Revision) (i) special names for polygons with n sides $3: \leq n \leq: 12$ (ii) identification and sketching of n-sided polygons (b) Angle properties: (i) sum of interior angles; (ii) angles formed when two or more straight lines are cut by a transversal: alternate, corresponding, vertically opposite, complementary, supplementary, cointerior/allied; special relationship between these sets when the lines that are cut are parallel		
Term 1 Week 3 Number Theory	(a) Formal application of the place-value concept to numbers in bases other than 10: (i) the operations, A, S, M with numbers in bases besides 10; (ii) application of (i) - (iii) to non-metric systems of measurement		
Date/Topic	Objectives	Resources	Possible Assessment

Term 1 Week 4 Plane Figures	(a) Angle properties: (i) relationship between ext. angles and interior opposite angles; (ii) calculation of missing int. angles of a triangle and of ext. angles of a triangle		
Term 1 Week 5 Number Theory	(a) Extension of the use of common fractions to ratios: (i) a ratio: the concept; (ii) symbolic representation of a ratio: a to b or $a: b$, or a / b (iii) ratios in their simplest forms;		
Term 1 Week 6 Circle and Circumference	(a) The circle, enclosed by a curved line: (i) identification and names of parts of the circle centre, radius, diameter, circumference, arc, segment, sector, chord and the relationships among them; (b) An irrational number: concept and examples; (i) introduction of π; use of the more commonly used approximate values for π (c) Measurement around plane shapes with curved lines: (i) circumference of circle; (ii) length of any part/arc of the whole circumference $(\% / 360 \times 2 \pi r)$;		
Week 7	Monthly Test 1		
Term 1 Week 8 Number Theory	(a) Extension of the use of common fractions to ratios: (i) relationship between equal ratios and equivalent fractions; (ii) division of a total in a given ratio (unequal sharing) (iii) increase or decrease in value by a given ratio (b) Solution of worded problems involving ratio		
Term 1 Week 9 Perimeter and Circumference	(a) Measurement around plane shapes with curved lines: (i) perimeter of a sector of a circle (ii) perimeter of composite shapes bounded by straight line(s) and semicircular arcs or arcs of quarter circles		
Date/Topic	Objectives	Resources	Possible Assessment
Term 1 Week 10	(a) Extending the concept: (i) percent: a ratio that compares a number to 100; expression of a ratio as a percent		

Number Theory	(b) Finding approx. values of decimal fractions and mixed numbers correct to (i) 3 or more decimal places; (ii) 1 or 2 significant figures	
Term 1 Week 11 Algebra	(a) Determining HCF and LCM of algebraic expressions (b) Simplification of algebraic expressions involving (i) the removal of brackets before the collection of like terms; (ii) working with simple fractions such as $\frac{x}{3}+\frac{x}{5}-\frac{x}{10} \text {. and } \frac{x y}{5} \times \frac{10}{x}$	
Term 1 Week 12 Indices	a) Index (Revision) (b) Evaluation of numbers with integral indices: Laws of indices (i) $a^{m} \times a^{n}=a^{m+n}$ (ii) $a^{m} \div a^{n}=a^{m-n}$ (iii) a^{0} (iv) $\left(a^{m}\right)^{n}=a^{m n}$ (v) $\mathrm{a}^{-\mathrm{m}}=1 / \mathrm{a}^{\mathrm{m}}$	
Term 1 Week 13 Algebra	(a) Solution of algebraic equations with one variable, of the forms: (i) $2(p+7)=3(p-1), y-3(2 y+4)=8$ (ii) $\frac{x-3}{4}=7$ (iii) $\underline{5}=-15$ x (b) Problem solving involving the formation and solution of equations of the forms already introduced, across topics and strands	
Week 14	Monthly Test 2	

Term 2: Easter (January to March)
Topic: Measurement/Statistics/Sets
Duration: 12 weeks (max: 54 contact periods)

Date	Objectives	Resources	Possible Assessment
Term 2 Week 1 Area	a) The area covered by: (i) triangles where length of sides are given or can be deduced		
Term 2 Week 2 Statistics	(a) Measures of central tendency (i) three 'averages' commonly used: - the arithmetic mean; - the median; - the mode (ii) computation of the median and mode from a set of raw scores (not necessarily tabulated)		
Term 2 Week 3 Area	a) The area covered by: (ii) quadrilaterals (square, rectangle, trapezium, parallelogram, kite-shaped)		
Term 2 Week 4 Statistics Thursday and Friday Consultation Days	(a) Measures of central tendency (iii) computation of the mean not necessarily tabulated)		
Date/Topic	Objectives	Resources	Possible Assessment
Term 2 Week 5	(a) The area covered by: (i) Circle		

Mathematics GRADE 8 Scope and Sequence

Term 3: Summer (April to July)
Topic: Algebra/Statistics/Consumer Arithmetic/Sets/Relations \& Functions/Matrices
Duration: 13 weeks (max: 60 contact periods)

Date	Objectives	Resources	Possible Assessment
Term 3 Week 1 Sets	(d) The use of the result to solve simple numerical problems (b) Use of set notation to represent the solution of linear inequalities with one variable		
Term 3 Week 2 Matrices	2. 1 (a) a matrix, a type of table: (i) use of a matrix to show numerical information! statistical data in rows and columns (b) working with matrices: (i) the order of a matrix, number of rows and columns in that sequence; (ii) the type of matrix based on its order; (iii) addition and subtraction of matrices of the same order;		
Term 3 Week 3 Sets	(c) (iii) The construction and interpretation of Venn diagrams which show the universal set with no more than two sets and/or subsets; (iv) - a set \& its complement		
Term 3 Week 4 Matrices	2.1 (b) working with matrices: (iv) multiplication of any matrix by a constant (c) use of matrix addition, subtraction and multiplication to solve simple algebraic problems		
Week 5	Monthly Test 3		
Date/Topic	Objectives	Resources	Possible Assessment
Term 3 Week 6 	1.1(a) examination of the connection or relationship (iii) between a relation \& an equation showing the same information (b) pictorial representation of a relation by (iii) showing a set of ordered pairs on a coordinate/Cartesian plane; finding the domain and/or the range from the graph		

Mathematics GRADE 8 Scope and Sequence

Functions			
Term 3 Week 7 Matrices	2.1 (c) use of matrix addition, subtraction and multiplication to solve simple algebraic problems		
Term 3 Week 8 Functions **Labour Day/ Midterm	1.1 -(c) types of relations: (ii) relations which are functions: -• special properties of functions; -• identification of the function rule;		
Term 3 Week 9 Functions	1.1 -(c) (iii) use of function notation: $f(x)=x-4, y \longrightarrow f(x), f: x \longrightarrow x-4$, to represent the function rule; (iv) evaluation of $f(x)$ for a given value of x and the function rule (the input-output relationship);		
Term 3 Week 10 Functions	1.1 (d) use of function rule to construct and interpret flow diagrams.		
Term 3 Week 11 All Topics	Revision		
Week 12	End of Year Examination		
Week 13	End of Year Examination		

